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The formula proposed by Linderberg for the evaluation of the resonance integral is further 
investigated. Consistency requirements for the c~ parameters lead to an explanation of the Wolfsberg- 
Helmholz form for ft. The simple assumption that fl is proportional to the overlap integral is 
improved. The dependency of c~ and fl values on the distance in a diatomic molecule in this 
approximation is presented and discussed. 

Linderbergs Formel zur Berechnung des Resonanzintegrals wird weiter untersucht. Konsistenz- 
forderungen f/ir die c~-Parameter ffihren zu einer Erkl~irung der Wolfsberg-Helmholz-Form fiir ft. 
Die einfache Annahme, dab fl dem ~berlappungsintegral proportional ist, wird verbessert. Die Ab- 
hgngigkeit yon e- und fl-Werten yore Atomabstand in einem zweiatomigen Molekiil wird in dieser 
N~iherung angegeben und diskutiert. 

Etude de la formule propos~e par Linderberg pour le calcul de l'int~grale de r~sonance. Des 
n~cessit~s de coh6rence pour les param~tres e conduisent/~ une explication de la formule de Wolfs- 
berg-Helmholz pour ft. L'hypoth~se simple selon laquelle fl est proportionnel ~ l'int6grale de re- 
couvrement est am~lior6e. On pr~sente en la discutant la d6pendance/l la distance des valeurs de 
et de fl dans une mol~cute diatomique dans cette approximation. 

I. Introduction 

Recently Linderberg [1] has shown that the equivalence of dipole length and 
velocity forms of oscillator strengths places a condit ion on the parameters  used 
in the Pariser-Parr  model. Under  the Z D O  assumption for the matrix elements 
of the operators  in the Hamil tonian  certain simplifications hold which allow to 
establish a connect ion between the gradient of the overlap integral and the 
resonance integral fl, which is defined over the core operator  Hoo~e. 

In the case of two orbitals in a diatomic molecule, centered at positions /z 
and v with vanishing gradient perpendicular  to the axis connect ing # and v, the 
following formula has been derived 

1 dSu~ (1.1) 
fluv- Ru ~ dR~ 

As is well known,  the Z D O  assumption may, in the Pariser-Parr  model,  be 
interpreted on a basis of symmetrically or thogonal ized a tomic orbitals [2]. This 
device has been used[ by Linderberg to calculate fin for ethylene and benzene. He 
could not  only reproduce  the commonly  used values, but  obtained the 
surprising result that  the slope of the overlap for Slater type orbitals and SCF 
orbitals is the same, a l though their overlap values differ by 20%. 

* Present address: Department of Chemistry, Saint Louis University, Saint Louis, Missouri 
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In Linderberg's paper a further assumption was tentatively made to represent 
the overlap in a certain range of interest in an exponential form 

S,~ = So e x p ( -  (~  + ~) R,~/2). (1.2) 

This leads to the following form for fl 

1 
flu~ - 2 (r + ~) SuJR, , .  (1.3) 

Wratten [3] used this idea to explain the form of fl which was used by Pople and 
Segal [4] 

1 o 
flAB = ~-  (fig + fO) S, , .  (1.4) 

A comparison of (3) and (4) suggests 

#o _ ~A (1.5) 
R 

if all the orbital exponents at the same atom are equal. 
As Linderberg's formula has already drawn attention for application to 

molecular systems [5], some remarks on the derivation and range of applicability 
should be worthwhile, in particular, because there seems to be some confusion 
about the formula. 

Firstly, it has been mentioned that form (1.1) implies the PPP-formalism [5]. 
This is certainly not the case. The connection is only established if the basis set 
for PPP-calculations is assumed as symmetrically orthogonalized. Secondly, 
there is a remark by Linderberg which could be misinterpreted. He stated that 
even if the overlap is zero, the slope of the overlap need not vanish. This is 
certainly true, e.g. for 2pcr-orbitals, but does not yield a satisfactory description 
of the situation. Derivation of Eq. (1.1) implies that the overlap is defined over 
non-orthogonal orbitals, fl however over orthogonalized orbitals. For rc-orbitals, 
which are the examples of Linderberg's paper, the overlap does not vanish at 
any finite distance. Wratten [3] has taken Linderberg's remark and concluded 
that Pople's formula [4] for fl suffers a defect because S has been neglected in all 
other parts of the SCF matrix elements. The objection has, as it stands, little 
meaning, because on transformation from orthogonalized to non-orthogonal 
sets, overlap integrals defined over the latter basis do occur [6]. We shall show 
later, that Pople's form of fl is in principle correct, because in both, orthogonal 
and non-orthogonal, basis sets proportionality of fl and S . . . . . .  thogonal occur. A 
decision as to whether Pople's formula is inconsistent with the other assumptions 
of the C N D O  method can only be made through parameter values. This point 
will be discussed later. But Wratten's form [5] suffers from the defect that fl 
cannot converge to the proper limit e for vanishing distance. 

In the following, we center attention on diatomic molecules. This cannot 
give correctly the higher order effects in overlap expansions for larger systems 
[7], But we know that nearest neighbour effects are the dominant ones and we 
therefore prefer to simplify this aspect to a topological theory. This device yields 
some new qualititative results. 
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2. Derivation of the Basic Equation 

To get a better insight into formula (1.1), let us go through the derivation 
more explicitly. We start with Heisenberg's equation of motion [8] for the 
position vector 

p = [r, HI (2.1) 

where p has been defined for convenience as antihermitian. This cancels the 
imaginary i, and we have to observe that Pab------Pbo" For many-electron 
systems p and r are sums over the single electron parts 

P = Z P i ,  r = Z ri" (2.2) 
i i 

We can simplify the formalism by the observation that the electronic motion 
commutes with the position vector and that expection values of the Pi can be 
defined over molecular orbitals 

(pl)  = @,lpi lwi) .  

Expansion over atomic orbitals yields 
g 

(pi> = F, ci, ci~ <x~ Ipilz~) 
r V 

so that (2.1) essentially results in 

(~ lp i l  z~) = (z.I [rl, hd Iz~) (2.3) 

where h i is the one-electron core operator. 
In the following, we shall omit brackets and indices i and use for (2.3) the 

notation 
p,~ = Jr, h],~. (2.4) 

The product of operators on the right side of (2.4) can be expanded in any 
complete and orthogonal set {2} by using Dirac's resolution of the identity [9] 

F, I;oi) (2i I = 1. 
i 

It yields a general form of relation between momentum vector, position vector 
and core elements: 

p,~ = y~ ( r ~ h ~ . ~ -  h,~r~v ) . (2.5) 

3. Symmetrical Expansion 

We define now symmetrically orthogonalized orbitals 2 from two equivalent 
Slater orbitals Z by 

2,  = A z a  + B Z  b , (3.1) 

2b = B za + A X b , 
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where A and B fulfill the relations 

A 2 § B 2 1/(1 2 = - Sob),  

2 A B  = - S,b/(1 -- SZ, b), (3.2) 
(A 2 - B2)  2 = A 2 + B 2 . 

For convenience, we give the relations between ~ and fl in the orthogonal and 
non-orthogonal (with bar) set 

= (A 2 + B2)~ + 2 A B f l ,  
(3.3a) 

fl = (A 2 + B 2) i f+  2 A B E ,  
o r  

= ~ + S f l ,  (3.3b) 
~ = fl + s~  . 

Now we are able to derive Linderberg's formula as follows. We take a set of two 
orthogonal orbitals 2a and 2b only 

Pab = ro. h a  b - haarab 

+ rabhbb- h.brbb (3.4) 

= (ro~ § rob) h.b + r~b(hbb -- h J .  

Under the assumption of equal exponents for )G and Xb and using definition (3.1) 
and (3.2) we obtain 

pob = ( A2 - B2)  ( r ~ a -  r ~ )  f l .b.  

As p has been defined as antihermitian, we can use the relation 

Pab : ( A 2  - -  B2)  P,~b 
and obtain 

o r  

Pa~ = - flab R , R = r ~ -  raa , (3.5) 

1 dSar , , 
flab-- R dR ' R = IR[. (3.6) 

From the symmetrical expansion, we can get only information about fl, but not 
about ~. If we would take for instance 4, = �89 + )b)/q/1 +S  2, 2b = �89 -- Xb)/ 
I ] / ~ - S  z, we would obtain the same result (3.5). We need another relation to 
overcome the lack of information about e, ~ and ft. This can be obtained when 
we leave the molecular symmetry property and start with an asymmetrical 
atomic expansion. 

4. Asymmetrical Expansion 

We define the p-integral over non-orthogonal orbitals ~ and b and take as 
expansion function a complete set of atomic orbitals centered at atom A 

{4} . . . .  " . . .  = a , a , a  
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Then we rewrite (2.5) 

Pab = reeheb - h a a r a b  

+ raa, ha, b - h~a, ra,~ (4.1) 

+ raa,,ha,, b - haa,,ra,, ~ . . .  

Relation (2.5), and in consequence (4.1), has to be independent of the choice of 
the origin of the coordinate system. For the left side of (4.1) this is obviously ful- 
filled, for the right we may take advantage of this invariance property by choosing 
a proper origin. Furthermore, we take the orbitals ~ and b as equivalent: 
2 s ~ - 2 s  b, 2 p G - 2 p a  b, 2 p r t , - 2 p r ~  b etc. So they have a moment only along the 
axis of the diatomic molecule. 

a) Coordinate system origin at atom A: 

r i rr r !  

PaP = - -  - - ~ : R S ~ - 7  r - N  r . . .  

(4.2) 
7 = haa, , r'  = ra, b etc. 

We have used the property that the moment vanishes: "Zab = O, if the origin is in 
the middle between, atoms A and B. This is valid for equal exponents. 

b) Coordinate system origin in the middle between atom A and B 

p ~  = - - ~  f i R -  7 ~ - ~ ' ~ "  . . .  (4.3) 

Between r' and F the relation holds 

r' = 1 R S '  + i ; ' .  (4.4) 

A closer inspection of (4.2) and (4.4) yields that f '  is a small quantity in comparison 
to r'. So we regard it as of second order in S~ and neglect it. Besides, ~' etc. are 
smaller quantities than ft. This yields the reasonable approximations 

t r t cf r 
pa~ = - - ~ - R ( T S  +'Y: S + 7  S ...), (4.5a) 

Pa~ = - -~- R/7. (4.5 b) 

A comparison of (4.5a) and (4.519) yields 

f l = T S  + - ~ ' S '  + 7 " S "  . . .  

which is nothing else than Ruedenberg's asymmetrical expansion [101 

Zb = SabG + S , , b G ,  + S~-bZ~, . . . .  

This means that we still have a consistent relation between ~ and fl-, although 
form (4.5b) for ~ is  only approximately valid. Together with (3.3) and (3.5), (4.5b) 
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yields 

i f=  2/3, (4.6a) 

/3 = S~, (4.6b) 

2 
i f -  1 + S 2 S~. (4.6c) 

The last equation is obviously most interesting. It gives an explanation of the 
Wolfsberg-Helmholz factor [11] K 

2 
K = 1 + S ~ "  (4.7) 

K is unity for vanishing distance and two for infinite separation. It is always 
smaller than two which eliminates the choice of values K = 3 which was taken 
by several investigators. In ~-electron systems with S = 0.25 the value K = 1.88 
comes close to the generally adopted value K = 1.75 [12]. To be more correct, 
we would have to adopt three K-values, e.g. in benzene 1 

K s = 1.70, K~ = 1.80, K~ = 1.88. 

The choice of a single K value was obviously successful only because the three 
K-values are very close. 

At this point, we are also able to make a comparison with Pople's formula 
for ft. If Pople's basis set is regarded as non-orthogonal we obtain 

2 
f ro= I + S  2 ~s (4.8) 

whereas an identification with the orthogonalized set would yield 

/3o = C~s. (4.9) 

From our derivation we obtain (Table) 

fro = _ 12.76 eV, /3 ~ = - 6 . 3 8  eV. 

This reveals that the actual choice of the parameter value/3 ~ -- - 21 eV can only 
be ascribed to the non-orthogonal set. 

From the definition in Pople's papers [4, 13], it should be clear that this 
author assumed a non-orthogonal set. It is not quite clear, however, that the 
neglect of overlap of certain electronic t w o - c e n t e r  integrals is consistent with this 
assumption. In a paper by McWeeny [14], we already find a remark about an 
inconsistency in the CNDO basis. A way out of this dilemma is only in the con- 
clusion that the neglect of electronic two-center integrals is too minor to influence 
the interpretation of the basis set; the dominant effect is in/3. 

Consequently the set has to be regarded as non-orthogonal. We should not 
be confused by the ZDO assumption in connection with the invariance question. 
The invariance is discussed only for orbitals at the same center and does not 
concern the two-center non-orthogonality problem. 

1 With Slater exponents. 
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5. Two Different Shielding Exponents 

With the same device, we shall at tack now the difficult case of different 
exponents for the two orbitals at a tom A and B. The Eqs. (3.3) take now the form 

fl -- (A 2 + B z) -fi+ AB('5. + ~b), 

~o = A2~, + 32-db + 2AB'fi, (5.1a) 

% = B2~, + AZ-~b + 2ABff ,  
or 

1 

1 1 
~. = ~ - ( a .  + ~b) + 2(A2 _ B 2 )  ( ~ . - - ~ b ) + S f l ,  (5.1b) 

1 1 
Rb = T (a, + %) -- 2(A2 _ Bz ) (~,, -- o:b) + Sfl. 

Again we may  start with a truncated symmetrical  expansion. Analogous  to (3.5), 
we obtain the relation 

I AB A2+B2 1 
pab=--Rf l+ A 2 _ B  ~ (raa+rbb)+ A2 B 2 rab (O~b--O;a). (5.2) 

We know that the term in the brackets has to be independent  of the coordinate  
origin 2. In addition, we know that the dipole momen t  of a charge distribution 
ZaZb vanishes if we take the center of charge as the origin of the coordinate  system. 
For  symmetry  reasons, this center of charge has to be on the axis between a toms 
A and B. In the case of  equal exponents it is in the middle: r,b(�89 ) = 0. In the case 
of unequal  exponents we can assume: 

r~b(Ro) = 0 (5.3) 

where R o is different from �89 Ro is defined to have the same direction as R, 
i.e. from a tom A to a tom B. 

Then (5.2) can be simplified 

AB 
Pab = - -  R f l  A2 _ B2 (2R o - R) (eb -- C~). (5.4) 

(2R o - R) is negative if the center of  charge is moved  towards  a tom A. 
The asymmetrical  expansion with the expansion functions centered at a tom A 

= a-,  a- ' ,  a -"  . . .  

yields under  assumption of coordinate  origin in R o 

P~b = - R 0 f i -  ~ ' ~ ' -  ~"~" ... (5.5) 

If we neglect now all terms with the exception of the dominant  one, we obtain 

P~b = - Rofi. 
2 That this is indeed the case can be proved by inserting the explicit expressions for AB and 

(A 2 + B 2) in the bracket. 
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This form is unfortunately not invariant under exchange of atoms A and B. If we 
take an expansion set with origin at atom B, we would obtain 

= - ( R  - g .  

The invariance is guaranteed, if we take the average of both expansions 

1 

= - T 
(5.6) 

To keep the invariance and to derive a simple formula, we have to make a 
compromise. This is probably a weak point in this derivation. So we can expect 
(5.6) to be reasonably valid only if the exponents of the orbitals at atoms A and B 
do not differ too much. What this means quantitatively is a difficult question. 
At any rate, it is more justified to use a consistent form as (5.6) and then search 
for correction terms than to use a restrictive approximation. From a comparison 
of (5.4) and (5.6) we obtain 

( 2 R ~  1) lcxb--~a[. (5.7) 

Substitution of (5.7) in (5.1b) yields for the orthogonalized set 

1 
= T S[-(O~a + ~b) -[- ~l<xo- ~ol], 

(5.8) 

For the non-orthogonal set we obtain 
1 

~= ~ gs[(-~a-~-'~b) -~- ~ l~ . -~b l ] ,  
(5.9) 

2 2R o 
K -  x = l - - -  

I + S  2 ' R 

6. Results and Discussion 

The dependence of K-, ~- and //-values on the distance, under special 
consideration of benzene, is collected in Figs. 1-3 and the Table. 

Let us concentrate on the ~-orbitals first. Linderberg [1] had already shown 
that the PPP ]%value can be quantitatively reproduced. We can show in addition 
that both ]~- and ~-values are almost insensitive to large changes in the orbital 
exponent for distances larger than 2 a.u. The second remarkable result is that the 
curves for a- and ~-values intersect at about 2 a.u., so that the closeness of these 
values in the literature [-15] is not at all accidental. In addition it may be observed 
that for distances larger than 3 a.u. ~ approaches ~ rapidly. 

Another case for comparison is Berthier's [-16] relation for ~-electron hydro- 
carbons 

fl.v = - 8.53 S.v, 
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Fig. 1. Dependence of K-, S-, a- and fl-values for 2s-orbitals on the distance R 
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Fig. 2. Dependence of K- ,  S-, ~- and ]~-va]ues for 2pcr-orbitals on the distance R. Scale in 
parentheses apply to c(- and/~-values only 

fitted for benzene. From (4.6b) the coefficient can be identified with e. The Table 
yields ~ = - 8.85 eV resp. - 6.40. For Slater exponents only the first is in agreement 
with Berthier's choice. 

Finally, we are unable with the above formalism to explain choices where the 
~-value has been set equal t o  the carbon ionization potential [15]. Indeed, the 
split between ~ and N is larger in the literature values [15] than in the present work. 
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2 t 

Fig. 3. Dependence  of K-, S-, c~- and  //-values for 2pTz-orbitals on the dis tance  R. Dashed  curves 
wi th  Si lverstone 's  exponents  

Table.  c~- and//-values for benzene (R = 1.40 •) 

2s 2p<r 2pTc 2pro 

1.59 a 1.59 a 1.59 ~ 1.29 b 
S 0.42 0.329 0.256 0.385 
K 1.70 1.80 1.88 1.74 
// - 2.68 0.52 - 2.27 - 2.47 

- 5.36 1.03 - 4 . 5 3  - 4 . 9 3  
c~ - 6.38 1.57 - 8.85 - 6.40 

- 7 . 5 0  1.74 - 9 . 4 3  - 7 . 3 5  

a Slater:  Physic. Rev. 36, 57 (1930). 
b Si lvers tone et al.: J. Amer,  chem. Soc. 88, 1325 (1966). 

We have already mentioned that we would have to take three K-values in the 
Wolfsberg-Helmholz approximation instead of one in all valence electron cal- 
culations. From Figs. 1-3 and the Table we obtain that the K-values are very close 
together for distances larger than 2 a.u. In addition, the K~-value is almost in- 
sensitive to large changes in the orbital exponent. This explains, at least in part, 
the success of Hoffmann's [12] results with a single K-value 1.75. We would like 
to mention that an explicit form of the Wolfsberg-Helmholz factor K has already 
been given by Cusachs [17] 

K = 2 - [S~vl 

which compares favorably with our formula (4.7). 
A closer inspection of the e- and/~-parameters for o--electrons reveals that the 

quantitative agreement with values in the literature is not so satisfactory, 
e.g. Pople's absolute value for /3 ~ = - 2 1  eV is much larger than our value 
K~s = - 12.76 eV. However, it must be added that the slope of the curve is small. 
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This is in qualitative agreement with Pople's claim that ric o should be constant. 
The qualitative feature of the other curves for 2s-orbitals are very similar to 
those of the ~z-orbitals. 

The greatest difficulty is the interpretation of Fig. 2 for 2p~-orbitals. There 
are large changes in all the parameter values for distances smaller than 3 a.u. 
However, it is not surprising that changes in sign occur. For the reference distance 
2.65 a.u. in benzene, fl and ff are positive. As some features are due to our 
approximation, it must be concluded that a pure fi-value over 2pa-orbitals has 
to be regarded with much caution. This leads us finally to the shortcomings of 
our simplified approach. Our formalism would be improved by more expansion 
functions. In particular, there is a coupling between the 2s- and 2pa-orbitals 
which probably cannot be neglected. It could shift the parameter values for s- and 
po--orbitals considerably. How important this coupling is, can be seen for 2po-- 
orbitals. Formulas (4.6b) and (4.6c) yield singularities for a and ~ if S vanishes. 
This is due to approximation (4.5b) which yields i f=  2fl, regardless of the overlap, 
whereas the correct form (3.3b) yields i f=  fl for S = 0. The maximum error occurs 
in this case of vanishing overlap. 

To the author's knowledge, so far all formulas 3 which have established a 
connection between ~ and fl resp. ~ and ff suffer this defect for the same reason: 
Any approximation which is based on a power series expansion in S is basically 
improper. One would think that this impropriety could be easily removed by a 
functional dependency on S which accounts for the cases S = 0 and S = 1. Yet, the 
author was unable to find a simple interpolation formalism which is still con- 
sistent. The basic difficulty is that for S = 0, e and 5~ cannot be determined through 
(3.3). Trial and error attempts are not very helpful; for instance, formulas like 
i f=  (1 + S) fl would yield e = fi and i f=  (1 + S 2) fi even yields c~ = Sfi. It might be 
worthwhile to mention that some methods avoid the singularity by arbitrarily 
defining an a-value. They consequently obtain fl = 0 for S = 0. This is of little 
advantage, because the inaccuracy is shifted from ~ to ft. Despite some negative 
quantitative results, we may conclude that the choice of fl-parameters in the 
literature can be explained on the basis of simple approximations. However, a 
quantitative application has to be regarded with much caution. To improve the 
formulas we have at least to include the largest coupling terms, e.g. between s- and 
pa-orbitals, in an expansion. This might lead to complicated formulas where the 
underlying features are less visible. 

Also the choice of hybrids would have to be discussed more extensively: Our 
formulas (3.6) and (4.6) are not covariant under hybridization. 

Finally, our diatomic approach neglects higher order corrections which would 
occur in polyatomic molecules. It might be objected that in this case we would 
have to neglect also the higher order terms in (4.6c). But these are necessary for 
consistency between ~ and ft. 
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3 We do not include those formulas which do not yield the proper limit; their range of 
applicability is much more limited. 
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